miércoles, 22 de abril de 2015

5 dias de comidas

Lo que comi en 5 dias 
Dia 1 
Desayuno: cereal con leche y un platano 
Colasion: sandwich de jamon con queso, cebolla,lechuga y espinacas, un yackult y 1 vaso de agua 
Comida: spaguetti y pollo con verduras 
Colasion: mandarina 
Cena: vaso de leche 
2 litros al dia 
Dia 2 
Desayuno: cereal con leche 
Colasion: samdwich de aguacate y un yackult 
Comida: crema de zanahoria, ensalada de lechuga con manzana,pepino,jitomate,y arandanos, atun (1lata) 
Colasion: vaso de fruta (sandia) 
Cena: tė verde 
Dia 3 
Desayuno: cereal con leche y un mango 
Colasion: sandwich de jamon y queso 
Comida: arroz y carne asada 
Colasion: 1 manzana 
Cena: vaso de leche
Dia 4
Desayuno: cereal con leche 
Colasion: vaso de leche 
Comida: crema de elote, carne asada con cebolla y ensalda de espinacas con manzana arandanos y cacahuates. 
Colasion: cacahuates 
Cena: vaso de leche
Dia 5 
Desayuno: cereal con leche 
Colasion: barrita de special k 
Comida: pollo y arroz 
Colasion : manzana 
Cena: cena 
Todos los dias ingiero 2 litros de agua. 
 

jueves, 12 de marzo de 2015

Practica 7

Objetivo: determinar experimentalmente el caracter acidp, basico o neutro de la disolucion de suleo en una muestra.
Materailes: vaso de precipitado de 250mL agitador de vidrio, embudo de plastico, una hoja de papel filtro, cuatro tubos de ensayo, gradilla, pipeta, muestra de suelo tamizado, agua destilada, papel pH y escala de colores 
Procedimiento: coloca 5 g de suelo con 50 mL de agua destilada en un vaso de precipitado y agita durante unos minutos Permite que al menos la mitad del volumen del suelo se asiente y filtra 
Coloca 1ml de filtado en un tubo de ensayo pequeño determina au caracter acido o basico con una tira de papel tornasol y su acidez con papel pH Compara los colores ontenidos con la escala patron. Puedes utilizar como testigo el pH del agua destilada 
La disolucion eel suelo contiene sustancias que hacen que adquiera un caracter acido o basico. 



Practica 6

Objetivo: determinar experimentalmente si un mol de una sustancia pesa lo mismo que un mol de otra sustancia 
Materiales: balanza, probeta de 50 o 100ml, 100ml de alcohol etanol,100ml de sal, medio kilo de azucar, dos latas de refresco, 100g de clavos de fierro de media pulgada, cuatro platos chicos d plastico, dos frascos con tapa. Tabla periodica 
Procedimiento: suponiendo que las sustancias para emplear son puras, consulta la tabla periodica y calcula de un mol de cada una de ellas. 
Mide la masa correspondiente a un mol de cada una para medir la masa de los liquidos uriliza recipientes con tapa para evitar perdidas por evaporacion. 
En el caso del agau, mide eñ volumen que correpsonde a la masa de un kol si su densidad es 1g/mol
¿Que volumen ocupa un mol de alcohol si su densidad es d 0.8g/mL?





viernes, 27 de febrero de 2015

Practica 2

 OBJETIVO: Determinar experimentalmente la presencia de sales solubles en el suelo.
MATERIALES: 
Dos vasos de precipitado,Papel filtro,pipeta con agua destilada,tiras de papel pH,Tres tubos de ensayo

SUSTANCIAS:
Muestra de suelo tamizado
Acido nítrico (HNO3)
Nitrato de plata (AgNO3)
Cloruro de Bario (BaCl2)
Sulfocianuro de Potasio (KSCN)

PROCEDIMIENTO:
Colocamos  50 ml de agua destilada en un vaso, determina su ph utilizando una tira de papel pH y anota tu resultado.
Agregamos  al vaso una cucharada de muestra de suelo tamizado y agitamos  con la varilla de vidrio durante tres minutos. 
Agregamos  Acido nítrico 0.1 M hasta que el pH de la disolución de 1-2. Filtramos la mezcla utilizando el papel filtro y el embudo. Obtuvimos  una disolución A y un residuo solido B.

ANALISIS DE LA DISOLUCION  A LA IDENTIFICACION DE CLORUROS (CL-)
Coloca 2ml de la disolución A acidificada en el tubo de ensayo numero 1. Agrega de cuatro a cinco gotas de nitrato de plata 0.1M y agita.

IDENTIFICACION DE SULFATOS (SO4) Coloca 2 ml de la disolución A acidificada en el tubo numero dos y añade unas 10 gotas de cloruro de bario.

IDENTIFICACION DE ION HIERRO  (Fe+3) Coloca2 ml de la disolución A acidificada en un tubo numero 3 y añade unas tres o cuatro gotas de sulfocianuro de potasio.

ANALISIS DEL RESIDUO SOLIDO B 
Identificación de carbonatos (CO3) 
Pasa el residuo solido B que quedo en el papel filtro a un vaso de precipitado. Agrega aproximadamente 2 o 3 ml de acido nítrico. 

Observaciones: 

PRUEBA PARA IONES              REACCIONES TESTIGO            ANALISIS DE MUESTRA 

cloruros CL-                              Nitrato de plata AgNO3                  Precipitado blanco

Sulfatos  SO4                            Cloruro de bario                           Precipitado Blanco

Hierro (III) Fe3+                         Sulfocianuro de potasio                 No hubo alguna reacción

Carbonato CO3                          Acido nítrico                                 Burbujeo muy leve. 










practica 4

OBEJTIVO: Determinar experimentalmente el tipo de componentes que constituyen la parte solida del suelo.
Materiales :
Microscopio
Soporte universal
Tela de asbesto
Mechero

Un vidrio de reloj
Pinzas para crisol
Hoja de papel periodico
muestra de suelo
Agua Oxigenada H2O2
Acido clorhídrico HCI
Agitador de vidrio
HIPOTESIS:
En una muestra de suelo original podemos encontrar seres vivos y compuestos orgánicos.
PROCEDIMIENTO :
Coloca en un vaso de precipitado de 300 ml una muestra de 2 gramos de suelo tamizado y agrega 10 ml de agua oxigenada.
Coloca el vaso de precipitado sobre la tela de asbesto y calienta levemente con el mechero.
Agrega mas agua oxigenada si es  necesario hasta que cese la efervescencia debida a la presencia de material orgánico.
Enseguida agrega 5ml de acido clorhídrico y deja hervir durante 5min con la finalidad de liminar sustancias indeseables.
Agrega agua hasta 250 ml y agrita vigorosamente, lo que permitirá que lavar los dolidos que quedan.
Deja reposar la suspensión  luego tira el agua.
Toma una muestra de los solidos con la punta de la espátula, colocala sobre vidrio de reloj y secala sobre la tela de asbesto. Deposita los fragmentos sobre una hoja de papel, examina los restos con el microscopio.
ANALISIS Y OBSERVACIONES:
¿Qué observas al hacer reaccionar el suelo con agua oxigenada?
Se consumía aun mas rápido que con el agua normal, haciendo una leve efervescencia
¿Al colocar la muestra tratada ¡que se oberva en microscopio? Tierra mas limpia, por asi decirlo, ahora sin pequeños seres moviéndose, ni otro tipo de material organico.
Compara lo observado en el microscopio con la información de la tabla 1 y responde:
¿Qué minerales están presentes en tu muestra?
Sales minerales y tierra limpia. :)











sábado, 14 de febrero de 2015

Practica 3

Sales solubles del suelo 
Objetivo: Determinar experimentalmente la presencia de algunos cationes y aniones en la disolucion del suelo. 
Materiales: muestra de suelo tamizado, dos vasos de precipitado de 250ml, embudo, papel filtro, una cuchara caferera, pipeta con agua destilada, espatula, varilla de vidrio, tiras de papel pH, tres tubos de ensayo rotulados del 1 al 3, acido nitrico(HNO3), 0.1  M (KSCN) en gotero. 
Procedimiento: 
1 preparación de la muestra:coloca 50 ml de agua destilada en un vaso, determina su pH utilizando una tira de papel pH y anota el resultado. Agrega al vaso una cucharada de suelo tamizado, agita con la varilla de vidrio durante tres minutos. Agrega suficiente acido nitrico 0.1 M hasta que el pH de la disolucion sea 1-2. filtra la mezcla utilizaando el papel filtro y en embudo. Obtendras una disolucion A y un residuo solido B, 
2'Analisis de la disolucion A 
A) identificacion de cloururos (CL): Coloca 2 ml de la disolucion A acidificada en el tubo de ensayo num 1. Agrega de 4 a 5 gotas de nitrato de plata 0.1 M y agita 
B)'identificacion de sulfatos (SO4):Coloca 2 ml, de la disolucion A acidificada en el tubo de ensayo num 2 añade unas 10 gotas de clururo de bario 0.1 M.
3 analisis del residuo solido B
A) identificacion de carbonatos (CO3) Pasa el residuo solido B que quedo en el papel filtro a un vaso de lrecipitado. Agrgea aproximadamente de 2 a 3 ml de acido nitrico 0.1 M y observa ¿se forman burbujas ? Si se formaron 


















jueves, 5 de febrero de 2015

libro química universo, tierra y vida

Capítulo 1: Átomos y moléculas en el universo / La tabla periódica de los elementos

Astrónomos y físicos han postulado como origen del Universo una gran explosión, que a partir de un gas denso formó las innumerables galaxias que ahora pueblan el Universo. Una de dichas galaxias es la Vía Láctea, formada por más de 100 mil millones de estrellas, entre las que se encuentra nuestro Sol. Cuando la temperatura del Universo era de alrededor de mil millones de grados, se comenzaron a formar los núcleos de los elementos. Primero se formaron los más simples, el hidrógeno (H) y el helio (He); posteriormente, en el interior de las estrellas se fueron formando los núcleos de otros elementos, hasta llegar a un número cercano a 100.
Los primeros elementos formados, que son también los más ligeros, el hidrógeno (H) y el helio (He), siguen siendo los principales constituyentes del Universo. El hidrógeno se encuentra en una proporción superior a 90% y el helio en alrededor de 8%. Estos elementos son más abundantes en el Sol y en las otras estrellas.
El hidrógeno, el elemento más sencillo y más abundante en el Universo, es un gas más ligero que el aire, por lo que, al llenar un globo con él, habrá necesidad de sujetarlo, o de lo contrario, se elevará por los aires. Esta propiedad fue aprovechada por el hombre para viajar por la atmósfera. Desde finales del siglo XVIII se construyeron máquinas voladoras para transportar hombres y equipo. Estas naves, llamadas dirigibles, eran peligrosas por el carácter inflamable del hidrógeno con el que se habían llenado.



El átomo de hidrógeno (H), como hemos dicho, el elemento más sencillo del Universo, está formado por un núcleo, llamado protón, que posee una carga positiva, la cual se encuentra neutralizada por un electrón (carga negativa).
 PROPIEDADES DEL AGUA
2H2 + O2http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gif 2H2O + calor (fuego)
Hidrógeno + oxígeno + agua + fuego

El agua, producto formado en la combustión del hidrógeno, es la molécula más abundante en la Tierra, donde se le encuentra en sus tres estados físicos: como líquido, cubriendo las 3/4 partes de la superficie del planeta, constituyendo mares, ríos y lagos; como vapor, en grandes cantidades en la atmósfera, de donde se precipita como lluvia o nieve, y en su estado sólido (hielo), formando depósitos sobre las altas montañas y cubriendo las regiones polares y en este caso en tal cantidad, que si este hielo se fundiera, el nivel del océano subiría de tal manera que inundaría la mayor parte de las ciudades costeras y gran parte de las tierras bajas, incluyendo países enteros como Holanda, que quedaría totalmente bajo las aguas. Esta molécula tan singular y abundante es la base de la vida; constituye más de la mitad del peso de los seres vivos. En los organismos marinos se le encuentra en una proporción de más de 90% en peso.
El agua, en estado puro, es un líquido incoloro, inodoro e insípido. Las propiedades físicas de tan importante sustancia a menudo se toman como tipo: su punto de fusión es de 0° su punto de ebullición a nivel del mar es de 100° la mayor densidad del agua se alcanza a 4°, siendo de 1 g/ml, es decir que cada mililitro pesará un gramo y por lo tanto un litro pesará un kilogramo.
El hecho de que el hielo sea menos denso que el agua líquida tiene gran importancia en el mantenimiento de la vida en las regiones frías del planeta: cuando un lago se congela, sólo lo hace en su superficie, ya que el hielo, por ser menos denso que el agua, flota sobre ella y, por ser mal conductor del calor, aisla las capas más profundas impidiendo su congelación, con lo que se logra mantener las condiciones apropiadas para la conservación de la vida. Este hecho afortunado para la vida en el planeta tiene, sin embargo, consecuencias negativas para lo que llamamos progreso de nuestra civilización, ya que los grandes témpanos de hielo (icebergs) son un peligro para la navegación en aguas frías y han destruido muchas embarcaciones.
AGUA OXIGENADA, PERÓXIDO DE HIDRÓGENO H2O2
El agua no es la única combinación que puede obtenerse entre hidrógeno y oxígeno. Existe además un compuesto que tiene un átomo de oxígeno más que el agua. La sustancia así formada es conocida como agua oxigenada, llamada con más propiedad peróxido de hidrógeno, cuya estructura es H2O2 o HO-OH. Esta sustancia, por tener un átomo de oxígeno extra, es inestable, es decir, libera oxígeno con facilidad para quedar como agua común. El agua oxigenada, por su facultad de liberar oxígeno, mata a muchos microbios por lo que se emplea como desinfectante de heridas, en cuyo contacto se puede ver al oxígeno desprenderse en forma de burbujas.
El agua oxigenada que se consigue en la farmacia como agente desinfectante es muy diluida, contiene sólo tres partes de agua oxigenada por 97 de agua común. El agua oxigenada que se emplea como oxidante en laboratorios químicos es más concentrada, pues contiene 30 partes de H2O2 por 70 de agua ordinaria. Esta solución tan concentrada es peligrosa, puesto que causa quemaduras al ponerse en contacto con la piel.
El agua oxigenada se emplea como decolorante, por lo que se utiliza, entre otras aplicaciones, para aclarar el color del pelo.
2 H2O2 http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gif2 H2O + O2
PREPARACIÓN DE HIDRÓGENO
El hidrógeno se puede liberar de las moléculas en las que se encuentra combinado con otros elementos. Ya que el agua es el compuesto de hidrógeno más abundante y accesible, será la materia prima en que primero se piense para preparar hidrógeno. Como el agua está formada por átomos de hidrógeno (H.), cuyo único electrón se pierde con cierta facilidad para dar iones positivos (H+) al pasar una corriente eléctrica a través del agua, es de esperarse la generación de protones que, por tener carga positiva, serán atraídos hacia el polo negativo (cátodo), donde se descargarán, liberando, por tanto, hidrógeno gaseoso (H2)
Sin embargo, existe el problema de que el agua pura es mala conductora de la corriente eléctrica, por lo que es necesario disolver en ella una base o un ácido fuerte que la hagan conductora. Disolvamos, por ejemplo, ácido nítrico (HNO3), cuyo protón se separa con facilidad (HNO3http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/2flechas.gif H + NO3-) de los iones nitrato (NO3-). En esta solución, que ahora es conductora, los protones, por tener carga positiva, viajarán hacia el cátodo o polo negativo, donde se descargan generando dos volúmenes de gas hidrógeno, mientras que en el polo positivo o ánodo se desprenderá un volumen de oxígeno gaseoso.
          





A esta reacción se le conoce como electrólisis, es decir, ruptura de una molécula por medio de electricidad. Tan útil reacción no sólo se emplea para romper la molécula de agua, sino que se usa también para liberar los metales de sus sales.

Capítulo 2: El átomo de carbono, los hidrocarburos, otras moléculas orgánicas, su posible existencia en la tierra primitiva y en otros cuerpos celestes          

La teoría de la gran explosión como origen del Universo concibe la formación del átomo de carbono (peso atómico = 12) en el interior de las estrellas mediante la colisión de tres átomos de helio (peso atómico = 4).
La generación del carbono y de los átomos más pesados se dio en el interior de las estrellas antes de la formación de nuestro Sistema Solar, cuyo nacimiento, a partir de materiales cósmicos, polvo y gas provenientes de los restos de estrellas que explotaron, se remonta a un pasado inimaginable: algo así como 4 600 millones de años.
Cuando la tenue nube de polvo y gas fue comprimida por la onda de choque producida por la explosión de una estrella de las llamadas supernovas, se formó la nebulosa en cuyo centro la materia se concentró y calentó hasta producir nuestro Sol. Rodeando al Sol, la materia fue siendo cada vez mas fría y sus elementos constitutivos más ligeros. Con este material se formaron los planetas y sus lunas.
La diferente composición química del cuerpo de los planetas y de su atmósfera se debe en parte a que se formaron en regiones de la nebulosa con distintas temperaturas, por lo que los planetas interiores, Mercurio, Venus, Tierra y Marte, son rocosos, con gran proporción de metales, óxidos y silicatos. En cambio, los planetas exteriores contienen más gases. Así, los planetas interiores han perdido alrededor de 98% de su peso original por haber estado formados de material volátil como hidrógeno y helio, mientras que los planetas lejanos conservan enormes cantidades de hidrógeno y helio.
COMPUESTOS OXIGENADOS DEL CARBONO
Conforme la atmósfera de la Tierra fue adquiriendo oxígeno, éste se fue consumiendo en la oxidación de los distintos elementos y moléculas que existían en ella. Al no haber suficiente oxígeno atmosférico, no había posibilidad de combustión; tanto el hidrógeno como los hidrocarburos podían calentarse a elevadas temperaturas sin producción de fuego. Fueron necesarios muchos millones de años para que la cantidad de oxígeno atmosférico se elevara lo suficiente para poder sustentar la combustión. Ésta es una reacción de oxidación en la que el hidrógeno se combina con el oxígeno del aire produciendo su óxido, que es el agua. En esta reacción violenta se produce, además, luz y calor.

2 H2+ O2
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gif 2 H2O + calor

Capítulo 3: Radiación solar, Aplicaciones de la radiación, capa protectora de ozono, fotosíntesis atmósfera oxidante, condiciones apropiadas para la vida animal.

En el Sol se están generando constantemente grandes cantidades de energía mediante reacciones termonucleares. La energía radiante se propaga por el espacio viajando a razón de 300 000 km por segundo (velocidad de la luz, c). A esta velocidad, las radiaciones llegan a la Tierra ocho minutos después de ser generadas.
Las distintas radiaciones solares, de las cuales la luz visible es sólo una pequeña parte, viajan por el espacio en todas las direcciones, como los radios de un círculo, de donde proviene su nombre.
Debido a que las radiaciones viajan como ondas a la velocidad de la luz (c), tendrán como característica la longitud de onda (l), que es la distancia entre dos máximos. 
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap59.gif





El número de ondas que a una velocidad constante pasan por un determinado punto cada segundo se le llama frecuencia (v)Mientras menor sea la longitud de onda, más ondas pasarán cada segundo, siendo por lo tanto mayor la frecuencia, y cuando l es mayor, menos ondas pasarán y por tanto la frecuencia será menor, por lo que, a la velocidad de la luz (c), la frecuencia será inversamente proporcional a l.
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap60.gif

FOTOSÍNTESIS
En la fotosíntesis ocurre un proceso similar al descrito para las celdas fotovoltaicas. Aunque en aquélla no se produce una corriente eléctrica, es sin embargo más eficiente que el realizado en una celda fotovoltaica artificial. La clave para tan alta eficiencia reside en la arquitectura molecular y en su asociación a membranas. Las membranas biológicas consisten en un fluido bicapa de lípidos anfipáticos especialmente fosfolípidos. La naturaleza anfipática de estos lípidos se debe a que presentan hacia el exterior la parte polar (cargada) de los fosfolípidos, la que es atraída hacia el medio acuoso. La parte interior de la membrana está constituida por las colas (no polares) de los fosfolípidos que forman una barrera entre los medios acuosos.

Todas las plantas que desprenden oxígeno poseen ambos fotosistemas, siendo el agua oxidada en el lado derecho, como se muestra en la figura 13, y el NADP+ reducido en el lado izquierdo. Es también interesante notar que existen trampas de luz (fototrampas), oxidación de agua y reducción de NADP+. En la oxidación de H2O la molécula de clorofila sensibilizadora tiene un pico de absorción de luz a 680 nm y se designa como P680. El complejo total del lado de oxidación de H2O de la Z es llamado fotosistema II. Después de la absorción de energía luminosa se forma P680* (excitado), que por oxidación pasa aP680+ (oxidado), mientras se reduce un aceptor que es plastoquinona, acomplejada con heme sin fierro. El producto reducido es el radical libre de una hemequinona que ha sido identificado por resonancia spin electrón. La localización en la membrana del P680 y su plastoquinona proviene de la recombinación de cargas, pero el P680+ es también rápidamente reducido por los electrones tomados del agua. De hecho, después de cuatro eventos fotoquímicos se observa emisión de O2.

FORMACIÓN DE AZÚCARES Y OTROS COMPUESTOS ORGÁNICOS.

Los organismos fotosintéticos producen glucosa y otros azúcares a partir del CO2atmosférico y el agua del suelo, usando la energía solar acumulada en el ATP y elNADPH

El proceso descubierto por Melvin Calvin es el siguiente: 
6 CO2 + 18 ATP + 12 H2O + 12 NADPH + 12 H+ http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gif C6H12O6 + 18 Pi + 18 ADP + 12 NADP+
El azúcar de cinco átomos de carbono se combina con CO2, catalizado por la enzima carbonílica 1,5-difosfato de ribulosa, produciendo dos moléculas de ácido fosfoglicérico, el que se combina entre sí para dar el azúcar de fruta o glucosa.
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/f13p71.gif





Capítulo 4: vida animal, hemoglobina, energía de compuestos orgánicos, dominio del fuego

La capa  de ozono formada por la acción de la luz ultravioleta dio a la Tierra una protección contra la alta energía de esta misma radiación, creándose así las condiciones apropiadas para la aparición de la vida. Las algas verde-azules y los vegetales perfeccionaron el procedimiento para combinar el CO2 atmosférico con el agua y los minerales del suelo con producción de materia orgánica y liberación de oxígeno que transformaría, en forma lenta pero segura, a la atmósfera terrestre de reductora en oxidante.
La química, que antes de la aparición de la vida se efectuaba en el planeta espontánea pero lentamente, ahora se acelera en forma notable. El oxígeno que se generaba por fotólisis del agua, ahora se libera de ésta en forma eficiente mediante la reacción de fotosíntesis, usando la luz solar como fuente de energía.
6 CO2 + 6 H2http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap62-1.gifC6H12O6 + 6 O2
El fierro necesario para la formación de hemoglobina el ser humano lo toma en su dieta a razón de 1 miligramo por día, acumulándose normalmente 4 gramos de él en los adultos. Es decir, un ser humano adulto tendría fierro suficiente como para elaborar un clavo de 4 centímetros de largo.
Otro mineral que el organismo humano requiere en cantidades apreciables es el muy común metal alcalino térreo llamado calcio, cuyos compuestos son bien conocidos. Ejemplo de esto son la cal y el mármol.
La cantidad de calcio que un adulto necesita ingerir diariamente en su dieta es de alrededor de 1 gramo, es decir, la cantidad que corresponde al contenido de calcio en un trozo de mármol de 2.5 gramos. El fósforo es otro de los elementos indispensables para el funcionamiento del organismo humano por lo que requiere ingerir diariamente en los alimentos alrededor de 1 gramo.
El uso del opio como sustancia analgésica es conocido desde tiempos muy remotos; los griegos la usaron varios siglos antes de Cristo. Uno de los principales constituyentes del opio, la morfina, fue aislado en 1803 por el farmacéutico alemán Sertürner.
El comportamiento de la morfina como analgésico es impresionante, ya que además de calmar el dolor, causa euforia, regula la respiración y es antidiarreico. Es un analgésico tan poderoso que se usa en las últimas fases del cáncer. Como contrapartida de las maravillosas propiedades de la morfina, se tiene la de crear dependencia. La persona que fue tratada con ella desea volver a tener la experiencia obtenida con la inyección. La repetición de la inyección crea necesidad y cuando esta necesidad no se satisface, el sujeto sufre de los síntomas que la morfina alivió: dolor abdominal, diarrea, respiración agitada, taquicardia, náuseas, sudor y otros dolores.
DESCUBRIMIENTO DEL FUEGO

El cerebro del hombre crece, piensa, memoriza, aprende nuevas cosas hasta que un día, cuando menos se lo espera, descubre el fuego, aprende a dominarlo y transmite el conocimiento de generación en generación.

Precisamente un paso fundamental en el dominio de la naturaleza lo dio el hombre primitivo cuando aprendió a dominar el fuego; en ese momento encontró la manera de liberar a voluntad la energía que los vegetales habían tomado de la radiación solar y acumulada en forma de materia orgánica. Ahora el hombre tenía la luz y el calor y su vida era más fácil, ya que dominaba la oscuridad y el frío de la noche y al mismo tiempo ahuyentaba a los animales peligrosos.
El fuego es la primera reacción química que el hombre domina a voluntad; en esta importante reacción exotérmica se libera, en forma rápida, la energía que el organismo animal liberaba de los alimentos en forma lenta e involuntaria. El hombre aprendió a iniciar la reacción o a avivarla aumentando el oxígeno al soplar sobre las brasas en contacto con leña seca, y más tarde supo iniciarlo con chispas y por fricción.
ENVEJECIMIENTO
Indudablemente, mientras más tiempo ha durado un objeto inanimado, su aspecto más se deteriora. Así, por ejemplo, los objetos de hierro que fueron bellos y brillantes, pronto pierden su brillo y tarde o temprano se cubren de la herrumbre que los corroe; los objetos de hule se vuelven quebradizos; lo mismo pasa con los bellos objetos de piel, que con el tiempo se deterioran volviéndose quebradizos porque se avejentan. Procesos todos ellos en que mucho tiene que ver el oxígeno: el hierro se oxida con el tiempo, al igual que el hule y el cuero que lo fueron en su proceso de envejecimiento. El aspecto de los seres vivos cambia también con el tiempo: se hacen viejos. El tiempo que se mide por el número de días, meses y años transcurridos, bien podría medirse por el número de respiraciones o por el volumen de oxígeno que ha usado el cuerpo desde su nacimiento hasta su muerte.
Los radicales libres están implicados en el proceso del envejecimiento del ser humano. Un intermediario clave es el superóxido O-O , formado por reducción del 02 molecular por varios reductores in vivo,
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap82.gif



http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap83.gif


Los antioxidantes son importantes en el tejido canceroso en donde la concentración de tocoferol es mayor que en tejido normal. Son también importantes en la prevención de oxidación de lípidos en los tejidos.
El envejecimiento biológico puede ser debido al ataque de radicales hidroxilo H O. sobre las células no regenerables del cuerpo. Estos radicales pueden provenir de generación indeseable en la cadena alimenticia o por irradiación ultravioleta u otra radiación de alta energía.
Se puede entonces pensar que los antioxidantes detendrán el envejecimiento; el problema es que muchos antioxidantes sintéticos, aunque más eficaces in vitro que los biológicos, producen reacciones secundarias indeseables en el organismo.

Capítulo 5. Importancia de las plantas en la vida del hombre: usos mágicos y medicinales

Una vez que el hombre aprendió a dominar el fuego, estuvo en condiciones de fabricar recipientes de arcilla, los que, endurecidos por el fuego, le servirán para calentar agua, cocinar alimentos y hacer infusiones mágicas y medicinales. De esta manera los aceites esenciales arrastrados por el vapor de agua aromatizaban la caverna y se condensaban en el techo, con lo que se separaban las sustancias químicas contenidas en las plantas. De esta manera se descubrió que los aceites esenciales no solo tenían olor agradable, sino que muchos de ellos tenían además propiedades muy útiles, como eran las de ahuyentar a los insectos y de curar algunas enfermedades.
El conocimiento de las plantas y sus propiedades seguía avanzando: ya no sólo las usaba el hombre como alimentos, combustible y material de construcción, sino también como perfume, medicinas y para obtener colorantes, que empleaba tanto para decorar su propio cuerpo y sus vestiduras, como para decorar techo y paredes de su cueva.
Es evidente que la necesidad de alimentación era primordial y que los testimonios del uso medicinal de las plantas son menos frecuentes; sin embargo, los chinos han dejado constancias escritas desde hace más de 4000 años acerca del uso antimalárico de la droga chaáng shan que corresponde a la planta Dichroa febrifuga, Lour. Los estudios modernos han demostrado la existencia en esa planta del alcaloide antimalárico llamado febrifugina.

http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap85.gif

La primera obra que se conoce sobre las propiedades medicinales de plantas, es debida al médico indígena Martín de la Cruz, quien la escribe en lengua náhuatl durante el año de 1552. La traducción al latín hecha por Juan Badiano, denominada Libellus de medicinalibus indorum herbis, se conoce gracias a que Charles Upson Clark la encontró en la Biblioteca Barberini durante los estudios que realizó en Roma de 1916 a 1919.
El rey de España, Felipe II, al tener noticias de que en la Nueva España existían más plantas y semillas medicinales que en ninguna otra parte del mundo, envió a Francisco Hernández, "protomédico e historiador general de las Indias, Islas y tierra firme del mar océano", para realizar una investigación médico-botánica en la Nueva España,  después de llevar a cabo esta investigación encontró 3 076 plantas y sus usos medicinales. Francisco Hernández no se limitó al estudio de plantas, sino que hizo también un amplio recuento de los animales y minerales.
DROGAS ESTIMULANTES CON FINES MÁGICOS Y RITUALES

El peyote, empleado por los pueblos del Noroeste, se sigue usando en la actualidad y se le considera una planta divina. Cuando este cactus es comido, da resistencia contra la fatiga y calma el hambre y la sed, además de hacer entrar al individuo a un mundo de fantasías, que lo hace sentir la facultad de predecir el porvenir. En busca de tan maravillosa planta los huicholes hacen peregrinaciones anuales, desde sus hogares en el norte de Jalisco y Nayarit, hasta la región desértica de Real de Catorce en San Luis Potosí, que es donde crece este cactus. Los efectos del peyote duran de seis a ocho horas.
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap87gif.gif
Su empleo entre los indígenas no se debe a hábito, sino que obedece a ritos religiosos. El principio activo del peyote (Anhalonium Williamsi) es el alcaloide llamado mescalina.
OLOLIUQUI

La planta mexicana llamada ololiuqui por los mexicas corresponde, según los estudios botánicos recientes, a la enredadera Turbina corymbosa, de la familia Convolvulácea. El ololiuqui tenía un amplio uso mágico-religioso en el México prehispánico. Según los primeros escritos posteriores a la conquista la semilla molida era usada, mezclada con otros vegetales, para ungir a sacerdotes indígenas, quienes pretendían adquirir la facultad de comunicarse con sus dioses.
Las propiedades medicinales del ololiuqui han sido mencionadas por Francisco Hernández, quien dice que es útil contra la gota.
PRINCIPIOS ACTIVOS
Albert Hoffmann encontró en 1960 alcaloides del tipo del ácido lisérgico. Entre ellos obtuvo, en forma cristalina, la amida del ácido lisérgico y su epímero, la amida del ácido isolisérgico, ambos con fórmula C16H17ON3, además del alcaloide de hongos, la chanoclavina. Los mismos alcaloides se encontraron en otra convolvulácea, la Ipomea tricolor.
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap88.gif






Hoffmann ensayó las amidas del ácido lisérgico y del ácido isolisérgico, pero no encontró en ellos propiedades alucinógenas, pues sólo le produjeron cansancio, apatía y somnolencia.
Los glucósidos encontrados en la planta también tuvieron actividad relajante.
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fbp88.gif










HONGOS

Ciertos hongos fueron usados con fines rituales en varias regiones del territorio mexicano y la práctica continúa también hasta nuestros días.
Existen muchos más ejemplos de plantas medicinales y alucinógenas. Todas ellas son un interesante material para realizar estudios químicos.
La flora sudamericana no se queda atrás de la mesoamericana y como ejemplo bastará mencionar el caso del llamado curare, un preparado obtenido a partir de diversas plantas y usado como veneno de flechas.

La palabra curare es una adaptación al español de una frase que en la lengua de una de las tribus sudamericanas significa "matar aves". Es un extracto acuoso de varias plantas, entre las que se encuentran generalmente especies de Chondodendron cissampelos y Strychnos.
Para su preparación, el brujo de la tribu hace hervir por varias horas en una olla de barro los diferentes vegetales; el agua que se pierde por evaporación es sustituida por adición de más agua; mientras se mantiene la ebullición se agita la mezcla y se agregan otras sustancias venenosas como hormigas y colmillos de serpiente. Cuando el extracto adquiere cierta consistencia y color, el brujo considera que ya está listo; lo hace saber a los asistentes a la ceremonia, y cesan la música y el baile que había acompañado todo el proceso de preparación del curare. Se reparte a los allí presentes un poco de la sustancia recién preparada para su uso en la cacería.
Con este material impregnarán las puntas de flecha y dardos de cerbatanas para cazar animales pequeños; cuando éstos son heridos, aunque sea ligeramente, morirán por efecto del veneno.
Entre las plantas venenosas que con mucha frecuencia se emplean en la preparación del curare se encuentran diversas especies de Strychnos. Estas plantas son muy venenosas debido a que contienen, entre otros alcaloides, la estricnina, sustancia tóxica que se usa para exterminar roedores y para matar animales de pieles finas. Cuando un ser humano u otro mamífero es envenenado con curare, comienza por perder el habla, después se le paralizan los miembros y los músculos faciales, hasta que, finalmente, le llega la muerte. http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap91.gif
La flora sudamericana es rica en plantas medicinales. Los polvos de corteza de quina adquirieron gran fama como medicina antimalárica después de que la marquesa de Chinchón, esposa del virrey del Perú, fue curada de paludismo con esa droga. El género de plantas andinas antipalúdicas fue llamado Cinchona y la medicina fue introducida a Europa desde 1640.
Como este medicamento, muchos otros de origen vegetal fueron usados por el hombre; aunque por ser de que se pudieran aislar los principios activos al estado puro, para así poder dosificarlos bien.
No fue sino hasta finales del siglo XVIII (1772-1777) que Lavoisier demostró que el aire está constituido por nitrógeno y oxígeno, y que en la combustión el oxígeno se combina con el carbono de las sustancias orgánicas para dar bióxido de carbono y agua. 
C6H12O6+6O2 http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gif6CO2+6H2O
Basado en este descubrimiento, Lavoisier elaboró un método para analizar los compuestos orgánicos. Para saber cuántos átomos de carbono tenía una molécula, bastaba medir cuidadosamente el CO2 producido, y de la cantidad de agua obtenida, se calcularía el número de hidrógenos en la molécula. Los estudios de Lavoisier crearon las condiciones apropiadas para que naciera la química de productos naturales. Los principios activos contenidos en plantas curativas conocidas desde la Antigüedad comenzaron entonces a ser aislados y a ser establecida su fórmula. En 1805, el farmacéutico alemán Sertürner aisló la morfina del opio. En 1820, Pelletier y Caventou aislaron de la quina los alcaloides quinina y cinchonina. Por la misma época, otros principios activos fueron aislados y analizados en cuanto a su contenido de carbono, oxígeno y algunos otros elementos como nitrógeno.
Las investigaciones químicas siguieron así perfeccionando sus conocimientos y ya no se conformaban con efectuar un simple análisis que encontrara cuántos átomos de cada elemento existen en la molécula, si no que querían saber cómo estaban acomodados, es decir la estructura de cada compuesto.
Para la determinación de la estructura de un compuesto tan simple como el alcanfor, cuya fórmula empírica C10H16O, encontrada por Dumas, se necesitó emplear 60 años de arduo trabajo. Más aún, en la determinación estructural de una sustancia más complicada como la quinina, se invirtieron más de 100 años.
Sin embargo, con el tiempo los químicos adquirieron día tras día más habilidad en el aislamiento, purificación y determinación estructural de productos naturales.
Nadie pensaba en sintetizar estas sustancias naturales porque en aquel tiempo se creía que para que dichos compuestos se formaran era indispensable una fuerza vital, es decir que sólo se podían formar dentro de organismos de seres vivos y lo único que el hombre podía hacer era aislarlos.
No fue sino hasta 1828 cuando el químico Friedrich Wöhler, en el curso de un experimento con el compuesto considerado mineral, isocianato de amonio, obtuvo su transformación en el compuesto natural urea.
H4NOCN http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/flecha.gifCO ( NH2)2
isocianato de amonio urea
Demostrándose que la síntesis de compuestos orgánicos es posible.
En 1973, del número total de prescripciones médicas administradas en Estados Unidos, más de 40% contenían productos naturales, entre los que predominaban los de naturaleza esteroidal, seguidos por varios alcaloides como la codeína. La quinina sigue usándose en la actualidad a pesar de la competencia que representan las numerosas drogas sintéticas.
En México se iniciaron en 1941 plantaciones de 600 hectáreas de la finca Guatimoc, del Estado de Chiapas, con semillas traídas precisamente del sureste de Asia. Esas plantaciones quedaron abandonadas y constituidas por árboles muy viejos de bajo contenido de alcaloides, formando una mezcla dentro de la cual existe poca quinina.

http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fap95.gif
Por lo general, cuando el químico aísla y determina la estructura de una sustancia con propiedades interesantes, y sobre todo si su precio es alto, se intenta su síntesis, al mismo tiempo que se ensayan productos sintéticos que, aunque con distinta estructura, tengan actividad similar.

ZOAPATLE, CIHUAPALLI (MEDICINA DE MUJER).

Esta planta era utilizada por las mujeres indígenas para inducir al parto o para corregir irregularidades en el ciclo menstrual. En la actualidad, su empleo sigue siendo bastante extendido con el objeto de facilitar el parto, aumentar la secreción de la leche y de la orina y para estimular la menstruación.
Los estudios químicos del zoapatle se comenzaron a realizar desde fines del siglo pasado, aunque el aislamiento de sus productos puros no se efectuó sino hasta 1970, cuando se obtuvieron de la raíz varios derivados del ácido kaurénico. En 1971 se aislaron lactonas sesquiterpénicas y a partir de 1972 se inician estudios que culminan con el aislamiento de los diterpenos activos llamados zoapatanol y montanol. Las patentes para la obtención de estos productos fueron adquiridos por la compañía farmacéutica estadounidense Ortho Corporation. La síntesis de zoapatanol fue llevada a cabo en 1980.
De otras especies de Montanoa conocidas también como zoapatle, y usadas con el mismo fin, se han aislado diterpenos con esqueleto de kaurano, tales como el ácido kaurénico, al que se le han encontrado propiedades relajantes de la actividad uterina.

Capítulo 6. Fermentaciones, pulque, colonche, tesgüino, pozol, modificaciones químicas

MUCHOS microorganismos son capaces de provocar cambios químicos en diferentes sustancias, especialmente en carbohidratos. Es de todos conocidos el hecho de que al dejar alimentos a la intemperie en poco tiempo han alterado su sabor y, si se dejan algún tiempo más, la fermentación se hace evidente comenzando a desprender burbujas como si estuviesen hirviendo. Esta observación hizo que el proceso fuese denominado fermentación. Esta reacción, que ocurre en forma espontánea, provocada por microorganismos que ya existían o que cayeron del aire, hacen que la leche se agrie, que los frijoles se aceden y otros alimentos se descompongan, y que el jugo de piña adquiera sabor agrio y llegue a transformarse en vinagre.
Estos hechos fueron conocidos desde las épocas más remotas, siendo quizá la fermentación el proceso químico más antiguo que el hombre pudo controlar. Éste observó que las uvas con el tiempo adquirían un cierto sabor al que llegó a aficionarse; así, el vino llegó a producirse en la región del Tigris y en Egipto desde hace ya varios miles de años. Los mercaderes griegos llevaron la uva y su cultivo a Marsella desde 600 años a.C. y su cultivo se extendió hasta el Rin desde 200 años a. C.
PULQUE

El pulque fue en Mesoamérica lo que el vino fue para los pueblos mediterráneos.
El pulque fue una bebida ritual para los mexicas y otros pueblos mesoamericanos. Era la bebida que se daba en las bodas, que se les daba a beber a los guerreros vencidos que iban a ser inmolados, la que se usaba en importantes ceremonias religiosas, etc. Estuvo tan arraigada en la cultura autóctona, que no bastaron 300 años de esfuerzos de las autoridades coloniales para eliminar su consumo, ni han bastado tampoco 176 años de esfuerzos de la sociedad independiente por desprestigiarla y tratar de sustituirla por otras bebidas obtenidas por fermentación, muy altamente prestigiadas por ser originarias de los pueblos europeos, cuya cultura se ha impuesto, como la cerveza y el vino, que cuentan con los medios masivos de comunicación para exaltar sus virtudes y el buen gusto que implica el consumirlas y ofrecerlas. A pesar del constante bombardeo propagandístico de los medios de comunicación, no se ha logrado eliminar la práctica ancestral de consumir pulque en las comunidades rurales y, todavía en escala significativa, en las ciudades.
El pulque es el producto de la fermentación de la savia azucarada o aguamiel, que se obtiene al eliminar el quiote o brote floral y hacer una cavidad en donde se acumula el aguamiel en cantidades que pueden llegar a seis litros diarios durante tres meses.
FERMENTACIÓN ALCOHÓLICA

La fermentación alcohólica producida por levaduras ha sido utilizada por todos los diferentes pueblos de la Tierra.
En la obtención industrial de etanol se usan diversos sustratos; entre ellos, uno de los principales son las mieles incristalizables que quedan como residuo después de la cristalización del azúcar en los ingenios.
Muchos sustratos con alto contenido de azúcares y almidones se utilizan en la preparación de bebidas alcohólicas como la cerveza, que tiene muy amplio consumo en el ámbito mundial. Pero no sólo para la producción de alcohol o vino se emplea la levadura, un empleo muy antiguo y actualmente generalizado en el mundo entero es la fabricación de pan.
El uso de la levadura en la fabricación del pan fue descubierto por los egipcios varios siglos antes de Cristo. El historiador griego Heródoto menciona su empleo en las panaderías egipcias desde 500 años antes de Cristo.
Al mezclarse la levadura con la masa de harina se lleva a cabo una fermentación por medio de la cual algunas moléculas de almidón se rompen para dar glucosa, la que se sigue fermentando hasta dar alcohol y bióxido de carbono (CO2). Es este gas el que esponja la masa de harina y hace que el pan sea suave y esponjoso. De no haber puesto levadura, el pan hubiese tenido la consistencia de una galleta. Junto con el alcohol se producen algunos ácidos que le imparten al pan su muy apreciado sabor.
Fermentación láctica
La leche es fermentada por varios microorganismos tales como Lactobacillus casei, o por cocos como el Streptococcus cremoris, transformándose en alimentos duraderos como yogur y la gran variedad de quesos tan preciados en la mesa.
La acidez de la leche fermentada se debe al ácido láctico que se forma por la transformación de los azúcares de la leche (de la lactosa). Este mismo tipo de fermentación es el que sufre la col en la preparación del sauerkraut de tan amplio consumo en la mesa de los pueblos europeos.


http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fp105.gif





Capítulo 7: Jabones, Saponinas y Detergentes.

Muchas veces hemos visto maravillados cómo en una fría mañana invernal los patos nadan en el estanque sin una aparente preocupación por ser mojados por las frías aguas; cuando por fin dejan el estanque, simplemente se sacuden de las gotas superficiales y su plumaje queda tan seco como antes de su contacto con el agua. Al observar las aguas estancadas es frecuente ver insectos que con gran seguridad van y vienen corriendo sobre la superficie del agua. Ambos fenómenos tienen que ver con el hecho muy conocido de que el agua y el aceite no se mezclan.
Tanto el cuerpo del insecto como el plumaje de los patos se encuentran cubiertos por una capa de grasa que los hace impermeables.
Cuando la ropa u otros objetos se manchan con grasa y tratamos de lavarlos con agua sucederá lo mismo que con el plumaje de los patos: el agua no moja a la mancha de aceite. El agua, por lo tanto, no sirve para limpiar objetos sucios con aceites o grasas; sin embargo, con la ayuda de jabón o detergente sí podemos eliminar la mancha de grasa. El efecto limpiador de jabones y detergentes se debe a que en su molécula existe una parte lipofílico por medio de la cual se unen a la grasa o aceite, mientras que la otra parte de la molécula es hidrofílico, tiene afinidad por el agua, por lo que se une con ella; así, el jabón toma la grasa y la lleva al agua formando una emulsión.
SAPONIFICACIÓN
Los jabones se preparan por medio de una de las reacciones químicas más conocidas: la llamada saponificación de aceites y grasas.
Los aceites vegetales, como el aceite de coco o de olivo, y las grasas animales, como el sebo, son ésteres de glicerina con ácidos grasos. Por eso cuando son tratados con una base fuerte como sosa o potasa se saponifican, es decir producen la sal del ácido graso conocida como jabón y liberan glicerina. En el caso de que la saponificación se efectúe con sosa, se obtendrán los jabones de sodio, que son sólidos y ampliamente usados en el hogar. En caso de hacerlo con potasa, se obtendrán jabones de potasio, que tienen consistencia líquida.
Con frecuencia se agrega brea en el proceso de saponificación obteniéndose así jabones en los que, junto con las sales de sodio de ácidos grasos, se tendrá la sal de sodio de ácidos resínicos, lo que los hace más solubles y más apropiados para lavar ropa. Evidentemente se podrán obtener sales de ácidos grasos con otros metales, especialmente con calcio, ya que el hidróxido más abundante y barato es la cal,Ca(OH)2. Ahora bien, si la saponificación se hace con cal, el producto será el jabón de calcio, Ca (OCOR)2. El problema es que este jabón es un sólido duro e insoluble, por lo que no sirve para los fines domésticos a los que se destinan los jabones de sodio.
Los jabones de sodio tienen un amplio uso en nuestra civilización, por lo que la industria jabonera es una de las más extensamente distribuidas en el mundo entero.

FABRICACIÓN DE JABÓN

El proceso de fabricación de jabón es, a grandes rasgos, el siguiente: se coloca el aceite o grasa en un recipiente de acero inoxidable, llamado paila, que puede ser calentado mediante un serpentín perforado por el que se hace circular vapor. Cuando la grasa se ha fundido ±8Oº, o el aceite se ha calentado, se agrega lentamente y con agitación una solución acuosa de sosa. La agitación se continúa hasta obtener la saponificación total. Se agrega una solución de sal común (NaCl) para que el jabón se separe y quede flotando sobre la solución acuosa.Se recoge el jabón y se le agregan colorantes, perfumes, medicinas u otros ingredientes, dependiendo del uso que se le quiera dar. El jabón se enfría y se corta en porciones, las que enseguida se secan y prensan, dejando un material con un contenido de agua superior al 25%.

ENZIMAS

Estos materiales adquirieron gran popularidad en Estados Unidos y Europa en la década de los sesenta debido a su facultad de eliminar manchas proteicas o carbohidratos, aun en el remojo. Los detergentes con esta formulación son capaces de eliminar manchas de sangre, huevo, frutas, etcétera.
Con todo, estos detergentes han producido problemas de salud en los obreros que trabajan en su elaboración. Por suerte, hasta ahora no los han provocado en las amas de casa.
El problema con los obreros se debió principalmente a que los detergentes producen polvo que, al ser aspirado, pasa a los pulmones. Esto se ha resuelto fabricando detergentes con gránulos mayores, para que no produzcan polvo.
Los fabricantes de detergentes de Europa y Japón están poniendo enzimas en la mayor parte de sus productos.
Entre las sustancias que se agregan a los detergentes para mejorar sus características se encuentran ciertas sustancias que protegen a las telas contra la fijación del polvo del suelo o el atmosférico. Estas sustancias, que mantienen a las telas limpias por más tiempo al evitar la reimplantación del polvo, son sin duda de gran utilidad, pues evitan trabajo y deterioro de la tela.
Una sustancia con esas propiedades es la carboxi-metilcelulosa, que es eficiente en algodón y otras telas celulósicas, pero falla con telas sintéticas. Para estas últimas es útil el uso de 1 a 6% de ácido poliacrílico o de poliacrilatos. Los ácidos carboxílicos secuestran la dureza del agua reaccionando con las sales metálicas presentes en esas aguas. El tripolifosfato de sodio es un excelente secuestrante y por muchos años se ha usado con óptimos resultados. Por desgracia en los Estados Unidos se empezaron a observar efectos de eutrofisación de las aguas, por lo que su uso está siendo severamente restringido.
Lo mismo está sucediendo en Europa, donde también se han descubierto daños por eutrofisación, fenómeno que consiste en el aumento de nutrientes a un ritmo excesivo, por lo que al descomponerse la materia prima orgánica que ingresa (detergentes), disminuye el oxígeno disuelto, alterando la vida en las aguas. La industria de jabones y detergentes que contribuye a mantener a nuestro mundo libre de inmundicias, es muy grande. En 1984 fue de 24 millones de toneladas y tan sólo en América Latina se produjeron 2.7 millones de toneladas.

Capítulo 8: Hormonas Vegetales y animales, feromonas, síntesis de hormonas a partir de sustancias vegetales.

Las plantas no sólo necesitan para crecer agua y nutrientes del suelo, luz solar y bióxido de carbono atmosférico. Ellas, como otros seres vivos, necesitan hormonas para lograr un crecimiento armónico, esto es, pequeñas cantidades de sustancias que se desplazan a través de sus fluidos regulando su crecimiento, adecuándolos a las circunstancias. Cuando la planta germina, comienzan a actuar algunas sustancias hormonales que regulan su crecimiento desde esa temprana fase: las fitohormonas, llamadas giberelinas, son las que gobiernan varios aspectos de la germinación; cuando la planta surge a la superficie, se forman las hormonas llamadas auxinas, las que aceleran su crecimiento vertical, y, más tarde, comienzan a aparecer las citocininas, encargadas de la multiplicación de las células y que a su vez ayudan a la ramificación de la planta.
La existencia de auxinas fue demostrada por F. W. Went en 1928 mediante un sencillo e ingenioso experimento, que consiste a grandes rasgos en lo siguiente: a varias plántulas de avena recién brotadas del suelo se les cortaba la punta, que contiene una vainita llamada coleóptilo; después del corte, la planta interrumpía su crecimiento. Si a alguna planta decapitada se le volvía a colocar la puntita, se notaba que reanudaba su crecimiento, indicando que en la punta de las plántulas de avena existía una sustancia que la hacía crecer.
EL MOVIMIENTO DE LAS PLANTAS

Es perfectamente conocido por todos el que las flores del girasol ven hacia el Oriente por la mañana y que voltean hacia el Poniente por la tarde, siguiendo los últimos rayos del Sol. Es también interesante observar cómo los colorines y otras leguminosas, cuando se ha ocultado el Sol, doblan sus hojas como si durmieran y cómo se enderezan a la mañana siguiente para recibir la luz del Sol. Más impresionante todavía quizá es el caso de la vergonzosa (Mimosa pudica). Esta bella, aunque pequeña planta, que tiene hojas pinadas, al más pequeño roce contrae sus hojas, aparentando tenerlas marchitas.
Todos estos movimientos de las plantas son provocados por sustancias químicas. 

FEROMONAS DE MAMÍFEROS

El que los animales respondan a señales químicas se sabe desde la Antigüedad: los perros entrenados siguen a su presa por el olor.
Las sustancias químicas son a veces características de un individuo que las usa para demarcar su territorio. Más aún, ciertas sustancias le sirven para atraer miembros del sexo opuesto.
El marcar su territorio le ahorra muchas veces el tener que pelear, ya que el territorio marcado será respetado por otros congéneres y habrá pelea sólo cuando el territorio marcado sea invadido.
Las manadas de leones o los grupos de lobos tienen su territorio de grupo. Estos territorios son marcados con frecuencia con orina, con heces, o con diferentes glándulas, tal como lo hace el gigantesco roedor sudamericano, el capibara, con la glándula nasal.
Estas secreciones están compuestas por una gran variedad de sustancias químicas, las cuales sirven para identificar la especie, el sexo y aun a un individuo particular.
Se piensa que la secreción de las glándulas especiales debe estar compuesta por feromonas, pero sólo unas pocas han podido ser probadas como tales. De la misma forma, es probable que la orina, las heces y la saliva también contengan feromonas, pero ha resultado difícil comprobarlo.
HORMONAS SEXUALES 

El ser humano, al igual que otros seres vivos, produce hormonas que ayudan a regular sus funciones. Entre las diversas hormonas que aquél produce se encuentran las hormonas sexuales. Éstas son sustancias químicas pertenecientes al grupo de los esteroides, pertenecientes al mismo grupo que el de los ácidos biliares y el colesterol.
Las hormonas sexuales son producidas y secretadas por los órganos sexuales, bajo el estímulo de sustancias proteicas que llegan, por medio de la corriente sanguínea, desde el lóbulo anterior de la pituitaria en donde estas últimas se producen.

HORMONAS MASCULINAS (ANDRÓGENOS) 

Las hormonas masculinas son las responsables del comportamiento y las características masculinas del hombre y otros similares.
Los caracteres sexuales secundarios que en el hombre son, entre otros, el crecimiento de barba y bigote, en el gallo son muy notables y han servido para evaluar sustancias con actividad de hormona masculina.
Cuando un gallo es castrado, su cresta y espolones disminuyen en tamaño hasta casi desaparecer. Si a este gallo se le administra una hormona masculina como testosterona o androsterona, la cresta y espolones vuelven a crecer.
HORMONAS FEMENINAS (ESTRÓGENOS)

Las hormonas femeninas son sustancias esteroidales producidas en el ovario. Estas sustancias dan a la mujer sus características formas redondeadas y su falta de vello en el rostro.
La hormona responsable de estas características en la mujer se llama estradiol y tiene la estructura mostrada en seguida:
http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen1/ciencia2/51/imgs/fbp132.gif






Por muchos años se creyó que la hormona femenina era la estrona, una sustancia encontrada en la orina femenina. Sin embargo, esta sustancia, que ciertamente tiene actividad hormonal, es en realidad un producto de descomposición de la verdadera hormona femenina, que es el estradiol.
El estradiol se obtuvo por primera vez mediante reducción de la estrona aislada de la orina y mostró ser una hormona nueve veces más potente que la estrona.
Su aislamiento se logró en 1935 por Doisy y su grupo. De 1.5 kg de ovarios de puerca se aislaron tan sólo 12 mg de estradiol en forma de su di-a-naftoato. Evidentemente la obtención de estradiol era inadecuada y por muchos años se siguió aislando la estrona de orina tanto de yegua como de mujer. La estrona era por lo tanto aplicada directamente, pero parte de ella era transformada, por medio de una reducción, en la auténtica y muy potente hormona femenina, el estradiol.

 

Capítulo 9: Guerras Químicas y Accidentes Químicos

GUERRA QUÍMICA

ANTES de que el hombre apareciera sobre la Tierra ya existía la guerra. Los vegetales luchaban entre sí por la luz y por el agua y sus armas eran sustancias químicas que inhiben la germinación y el crecimiento del rival. La lucha contra insectos devoradores ha sido constante durante millones de años. Las plantas mal armadas sucumben y son sustituidas por las que, al evolucionar, han elaborado nuevas y más eficaces sustancias que las defienden. Los insectos también responden, adaptándose hasta tolerar las nuevas sustancias; muchos perecen y algunas especies se extinguen, pero otras llegan a un acuerdo y logran lo que se llama simbiosis, brindándose ayuda mutua, como el caso de laYucca y la Tegeticula mexicana. En esta vida en simbiosis, la Yucca proporciona alimento y materia prima hormonal a la mariposa nocturna. Ésta, en cambio, se encarga de polinizar las flores de la planta asegurándole así su fructificación y reproducción.
De la misma forma, las abejas toman néctar y polen de las flores, pero a cambio ayudan a la fructificación y por consiguiente a la reproducción de la planta al polinizar sus flores.
La Acacia cornigera, que tiene espinas huecas, es hogar de gran cantidad de hormigas del género Pseudomyrmex, que no sólo viven en la planta, sino que se alimentan del líquido azucarado que ésta secreta por medio de sus grandes glándulas foliares. A cambio de casa y comida, las hormigas defienden a la planta contra otros depredadores.

GUERRA ENTRE INSECTOS Y DE INSECTOS CONTRA ANIMALES MAYORES

Muchos insectos poseen aguijones conectados a glándulas productoras de sustancias tóxicas con los que se defienden de los intrusos. Las avispas y las abejas son insectos bien conocidos por inyectar sustancias que causan dolor y alergias. El hombre conoce bien estas cualidades, pues muchas veces por perturbar la tranquilidad del enjambre ha sido inyectado con dopamina o histamina, sustancias entre otras que son responsables del dolor, comezón e hinchazón de la parte atacada.
EL HOMBRE USA LA QUÍMICA PARA LA GUERRA

Posiblemente la primera reacción química que el hombre aprovechó para destruir a su enemigo fue el fuego. La misma reacción de oxidación que logró dominar para tener luz y calor, para cocinar alimentos y fabricar utensilios, en fin, para hacer su vida más placentera, fue usada para dar muerte a sus congéneres al quemar sus habitaciones y cosechas.
Al pasar el tiempo el hombre inventa un explosivo, la mezcla de salitre, azufre y carbón, que es usada en un principio para hacer cohetes que alegraron fiestas y celebraciones. Este descubrimiento, atribuido a los chinos, fue utilizado posteriormente por el hombre para disparar proyectiles y así poder cazar animales para su sustento.
Pero el hombre, siempre agresivo, terminó por emplear el poder explosivo de la pólvora para hacer armas guerreras y así enfrentarse a su enemigo. Más tarde se fueron descubriendo explosivos más poderosos. Varios productos nitrados, por su alto contenido de oxígeno, son buenos explosivos.

Mi opinión sobre este libro es que vienen varios temas diferentes con historias diferentes que nos hacen entender con mas facilidad las cosas que estamos leyendo el libro se puede decir que tiene temas no muy comunes pero que son fáciles al leerlo, me gusto porque tiene formulas y explicaciones como ejemplos del tema para entender mejor, la redacción está muy bien el libro habla de químicas pero conforme en la vida cotidiana, en lo personal este libro es muy pequeño lo que me gusto mas es que no tenía dibujitos en todas las páginas.